Color: Advanced Color Correction and Manipulation

Thanks to StarTools' Tracking feature the Color module provides you with unparalleled flexibility and color fidelity when it comes to colour presentation in your image.

The Color module fully capitalises on the signal processing engine's unique ability to process chrominance and detail separately, yet simulatenously. This unique capability is responsible for a number of innovative features.

Firstly, whereas other software without Tracking data mining, destroys colour and colour saturation in bright parts of the image as the data gets stretched, StarTools allows you to retain colour and saturation throughout the image with its 'Color Constancy' feature. This ability allows you to display all colours in the scene as if it were evenly illuminated, meaning that even very bright cores of galaxies and nebulas retain the same colour throughout, irrespective of their local brightness, or indeed acquisition methods and parameters.

This ability is important in scientific representation of your data, as it allows the viewer to compare similar objects or areas like-for-like, since colour in outer space very often correlates with chemical signatures or temperature.

The same is true for star temperatures across the image, even in bright, dense star clusters. This mode allows the viewer of your image to objectively compare different parts and objects in the image without suffering from reduced saturation in bright areas. It allows the viewer to explore the universe that you present in full colour, adding another dimension of detail, irrespective of the exposure time and subsequent stretching of the data.

For example, StarTools enables you to keep M42's colour constant throughout, even in its bright core. No fiddling with different exposure times, masked stretching or saturation curves needed. You are able to show M31's true colours instead of a milky white, or resolve star temperatures to well within a globular cluster's bright core. All that said, if you're a fan of the traditional 'handicapped' way of colour processing in other software, then StarTools can emulate this type of processing as well.

The Color module's abilities don't stop there, however. It is also capable of emulating a range of complex LRGB color compositing methods that have been invented over the years. And it does it at the click of a button. Even if you acquired data with an OSC or DSLR, you will still be able to use these compositing methods; the Color module will generate synthetic luminance from your RGB on the fly and re-composite the image in your desired compositing style.

The Color module allows for various ways to calibrate the image, including by star field, galaxy sampling and - unique to StarTools - the MaxRGB calibration view. The latter allows for objective colour calibration, even on poorly calibrated screens.

Because luminance (detail) and chrominance is processed separately in parallel, the module is capable of remapping channels for the purpose of colour (aka "tone mapping") on the fly, without impacting detail. The result is the unique ability to flip between popular colour renditions for, for example, narrowband data with a single click, whether you are processing SHO/HST datasets or duo/tri/quadband datasets. Similarly, DSLR users benefit from the ability to use the manufacturer's preferred colour matrix, yet without the cross-channel noise contamination that would otherwise impact luminance (detail).